Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.156
1.
Sci Data ; 11(1): 460, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710725

Blood orange (BO) is a rare red-fleshed sweet orange (SWO) with a high anthocyanin content and is associated with numerous health-related benefits. Here, we reported a high-quality chromosome-scale genome assembly for Neixiu (NX) BO, reaching 336.63 Mb in length with contig and scaffold N50 values of 30.6 Mb. Furthermore, 96% of the assembled sequences were successfully anchored to 9 pseudo-chromosomes. The genome assembly also revealed the presence of 37.87% transposon elements and 7.64% tandem repeats, and the annotation of 30,395 protein-coding genes. A high level of genome synteny was observed between BO and SWO, further supporting their genetic similarity. The speciation event that gave rise to the Citrus species predated the duplication event found within them. The genome-wide variation between NX and SWO was also compared. This first high-quality BO genome will serve as a fundamental basis for future studies on functional genomics and genome evolution.


Citrus sinensis , Genome, Plant , Citrus sinensis/genetics , Chromosomes, Plant , DNA Transposable Elements , Synteny
2.
Plant Cell Rep ; 43(6): 140, 2024 May 13.
Article En | MEDLINE | ID: mdl-38740586

KEY MESSAGE: The utilization of transcriptome analysis, functional validation, VIGS, and DAB techniques have provided evidence that GhiPLATZ17 and GhiPLATZ22 play a pivotal role in improving the salt tolerance of upland cotton. PLATZ (Plant AT-rich sequences and zinc-binding proteins) are known to be key regulators in plant growth, development, and response to salt stress. In this study, we comprehensively analyzed the PLATZ family in ten cotton species in response to salinity stress. Gossypium herbaceum boasts 25 distinct PLATZ genes, paralleled by 24 in G. raimondii, 25 in G. arboreum, 46 in G. hirsutum, 48 in G. barbadense, 43 in G. tomentosum, 67 in G. mustelinum, 60 in G. darwinii, 46 in G. ekmanianum, and a total of 53 PLATZ genes attributed to G. stephensii. The PLATZ gene family shed light on the hybridization and allopolyploidy events that occurred during the evolutionary history of allotetraploid cotton. Ka/Ks analysis suggested that the PLATZ gene family underwent intense purifying selection during cotton evolution. Analysis of synteny and gene collinearity revealed a complex pattern of segmental and dispersed duplication events to expand PLATZ genes in cotton. Cis-acting elements and gene expressions revealed that GhiPLATZ exhibited salt stress resistance. Transcriptome analysis, functional validation, virus-induced gene silencing (VIGS), and diaminobenzidine staining (DAB) demonstrated that GhiPLATZ17 and GhiPLATZ22 enhance salt tolerance in upland cotton. The study can potentially advance our understanding of identifying salt-resistant genes in cotton.


Gene Expression Regulation, Plant , Gossypium , Plant Proteins , Salt Tolerance , Transcription Factors , Gossypium/genetics , Gossypium/physiology , Salt Tolerance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants, Genetically Modified , Phylogeny , Synteny/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Profiling
3.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674082

Leucine-rich repeat receptor-like proteins (LRR-RLPs), a major group of receptor-like proteins in plants, have diverse functions in plant physiology, including growth, development, signal transduction, and stress responses. Despite their importance, the specific roles of kiwifruit LRR-RLPs in response to biotic and abiotic stresses remain poorly understood. In this study, we performed family identification, characterization, transcriptome data analysis, and differential gene expression analysis of kiwifruit LRR-RLPs. We identified totals of 101, 164, and 105 LRR-RLPs in Actinidia chinensis 'Hongyang', Actinidia eriantha 'Huate', and Actinidia chinensis 'Red5', respectively. Synteny analysis revealed that the expansion of kiwifruit LRR-RLPs was primarily attributed to segmental duplication events. Based on RNA-seq data from pathogen-infected kiwifruits, we identified specific LRR-RLP genes potentially involved in different stages of pathogen infection. Additionally, we observed the potential involvement of kiwifruit LRR-RLPs in abiotic stress responses, with upstream transcription factors possibly regulating their expression. Furthermore, protein interaction network analysis unveiled the participation of kiwifruit LRR-RLP in the regulatory network of abiotic stress responses. These findings highlight the crucial roles of LRR-RLPs in mediating both biotic and abiotic stress responses in kiwifruit, offering valuable insights for the breeding of stress-resistant kiwifruit varieties.


Actinidia , Gene Expression Regulation, Plant , Plant Proteins , Stress, Physiological , Actinidia/genetics , Actinidia/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Genome, Plant , Gene Expression Profiling , Leucine-Rich Repeat Proteins , Fruit/genetics , Fruit/metabolism , Transcriptome , Protein Interaction Maps/genetics , Synteny
4.
Microb Genom ; 10(4)2024 Apr.
Article En | MEDLINE | ID: mdl-38656275

Molluscan herpesviruses cause disease in species of major importance to aquaculture and are the only known herpesviruses to infect invertebrates, which lack an adaptive immune system. Understanding the evolution of malacoherpesviruses in relation to their hosts will likely require comparative genomic studies on multiple phylogenetic scales. Currently, only two malacoherpesvirus species have genomes that have been fully assembled, which limits the ability to perform comparative genomic studies on this family of viruses. In the present study, we fully assemble a herpesvirus from Illumina and Nanopore sequence data that were previously used to assemble the genome of the gastropod Babylonia areolata. We tentatively assign this novel herpesvirus to the genus Aurivirus within the family Malacoherpesviridae based on a phylogenetic analysis of DNA polymerase. While structurally similar to other malacoherpesvirus genomes, a synteny analysis of the novel herpesvirus with another Aurivirus species indicates that genomic rearrangements might be an important process in the evolution of this genus. We anticipate that future complete assemblies of malacoherpesviruses will be a valuable resource in comparative herpesvirus research.


Gastropoda , Genome, Viral , Herpesviridae , Phylogeny , Animals , Gastropoda/virology , Herpesviridae/genetics , Herpesviridae/classification , Whole Genome Sequencing/methods , Genomics/methods , Synteny
5.
BMC Genom Data ; 25(1): 37, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637749

BACKGROUND: Sweet yellow clover (Melilotus officinalis) is a diploid plant (2n = 16) that is native to Europe. It is an excellent legume forage. It can both fix nitrogen and serve as a medicine. A genome assembly of Melilotus officinalis that was collected from Best corporation in Beijing is available based on Nanopore sequencing. The genome of Melilotus officinalis was sequenced, assembled, and annotated. RESULTS: The latest PacBio third generation HiFi assembly and sequencing strategies were used to produce a Melilotus officinalis genome assembly size of 1,066 Mbp, contig N50 = 5 Mbp, scaffold N50 = 130 Mbp, and complete benchmarking universal single-copy orthologs (BUSCOs) = 96.4%. This annotation produced 47,873 high-confidence gene models, which will substantially aid in our research on molecular breeding. A collinear analysis showed that Melilotus officinalis and Medicago truncatula shared conserved synteny. The expansion and contraction of gene families showed that Melilotus officinalis expanded by 565 gene families and shrank by 56 gene families. The contacted gene families were associated with response to stimulus, nucleotide binding, and small molecule binding. Thus, it is related to a family of genes associated with peptidase activity, which could lead to better stress tolerance in plants. CONCLUSIONS: In this study, the latest PacBio technology was used to assemble and sequence the genome of the Melilotus officinalis and annotate its protein-coding genes. These results will expand the genomic resources available for Melilotus officinalis and should assist in subsequent research on sweet yellow clover plants.


Medicago truncatula , Melilotus , Genomics/methods , Genome Size , Synteny
6.
BMC Bioinformatics ; 25(1): 163, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664637

BACKGROUND: Identifying orthologs continues to be an early and imperative step in genome analysis but remains a challenging problem. While synteny (conservation of gene order) has previously been used independently and in combination with other methods to identify orthologs, applying synteny in ortholog identification has yet to be automated in a user-friendly manner. This desire for automation and ease-of-use led us to develop OrthoRefine, a standalone program that uses synteny to refine ortholog identification. RESULTS: We developed OrthoRefine to improve the detection of orthologous genes by implementing a look-around window approach to detect synteny. We tested OrthoRefine in tandem with OrthoFinder, one of the most used software for identification of orthologs in recent years. We evaluated improvements provided by OrthoRefine in several bacterial and a eukaryotic dataset. OrthoRefine efficiently eliminates paralogs from orthologous groups detected by OrthoFinder. Using synteny increased specificity and functional ortholog identification; additionally, analysis of BLAST e-value, phylogenetics, and operon occurrence further supported using synteny for ortholog identification. A comparison of several window sizes suggested that smaller window sizes (eight genes) were generally the most suitable for identifying orthologs via synteny. However, larger windows (30 genes) performed better in datasets containing less closely related genomes. A typical run of OrthoRefine with ~ 10 bacterial genomes can be completed in a few minutes on a regular desktop PC. CONCLUSION: OrthoRefine is a simple-to-use, standalone tool that automates the application of synteny to improve ortholog detection. OrthoRefine is particularly efficient in eliminating paralogs from orthologous groups delineated by standard methods.


Software , Synteny , Algorithms , Databases, Genetic , Genomics/methods
7.
Int J Mol Sci ; 25(8)2024 Apr 10.
Article En | MEDLINE | ID: mdl-38673762

The WRKY gene family is crucial for regulating plant growth and development. However, the WRKY gene is rarely studied in naked kernel formation in hull-less Cucurbita pepo L. (HLCP), a natural mutant that lacks the seed coat. In this research, 76 WRKY genes were identified through bioinformatics-based methods in C. pepo, and their phylogenetics, conserved motifs, synteny, collinearity, and temporal expression during seed coat development were analyzed. The results showed that 76 CpWRKYs were identified and categorized into three main groups (I-III), with Group II further divided into five subgroups (IIa-IIe). Moreover, 31 segmental duplication events were identified in 49 CpWRKY genes. A synteny analysis revealed that C. pepo shared more collinear regions with cucumber than with melon. Furthermore, quantitative RT-PCR (qRT-PCR) results indicated the differential expression of CpWRKYs across different varieties, with notable variations in seed coat development between HLCP and CP being attributed to differences in CpWRKY5 expression. To investigate this further, CpWRKY5-overexpression tobacco plants were generated, resulting in increased lignin content and an upregulation of related genes, as confirmed by qRT-PCR. This study offers valuable insights for future functional investigations of CpWRKY genes and presents novel information for understanding the regulation mechanism of lignin synthesis.


Cucurbita , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins , Transcription Factors , Cucurbita/genetics , Cucurbita/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Lignin/metabolism , Lignin/biosynthesis , Synteny , Genome, Plant , Seeds/genetics , Seeds/growth & development , Nicotiana/genetics , Nicotiana/metabolism
8.
Genome Biol Evol ; 16(4)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38648507

Conserved noncoding elements in vertebrates are enriched around transcription factor loci associated with development. However, loss and rapid divergence of conserved noncoding elements has been reported in teleost fish, albeit taking only few genomes into consideration. Taking advantage of the recent increase in high-quality teleost genomes, we focus on studying the evolution of teleost conserved noncoding elements, carrying out targeted genomic alignments and comparisons within the teleost phylogeny to detect conserved noncoding elements and reconstruct the ancestral teleost conserved noncoding elements repertoire. This teleost-centric approach confirms previous observations of extensive vertebrate conserved noncoding elements loss early in teleost evolution, but also reveals massive conserved noncoding elements gain in the teleost stem-group over 300 million years ago. Using synteny-based association to link conserved noncoding elements to their putatively regulated target genes, we show the most teleost gained conserved noncoding elements are found in the vicinity of orthologous loci involved in transcriptional regulation and embryonic development that are also associated with conserved noncoding elements in other vertebrates. Moreover, teleost and vertebrate conserved noncoding elements share a highly similar motif and transcription factor binding site vocabulary. We suggest that early teleost conserved noncoding element gains reflect a restructuring of the ancestral conserved noncoding element repertoire through both extreme divergence and de novo emergence. Finally, we support newly identified pan-teleost conserved noncoding elements have potential for accurate resolution of teleost phylogenetic placements in par with coding sequences, unlike ancestral only elements shared with spotted gar. This work provides new insight into conserved noncoding element evolution with great value for follow-up work on phylogenomics, comparative genomics, and the study of gene regulation evolution in teleosts.


Conserved Sequence , Evolution, Molecular , Fishes , Phylogeny , Animals , Fishes/genetics , Genome , Synteny
9.
Genome Res ; 34(3): 426-440, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38621828

Genome structural variations within species are rare. How selective constraints preserve gene order and chromosome structure is a central question in evolutionary biology that remains unsolved. Our sequencing of several genomes of the appendicularian tunicate Oikopleura dioica around the globe reveals extreme genome scrambling caused by thousands of chromosomal rearrangements, although showing no obvious morphological differences between these animals. The breakpoint accumulation rate is an order of magnitude higher than in ascidian tunicates, nematodes, Drosophila, or mammals. Chromosome arms and sex-specific regions appear to be the primary unit of macrosynteny conservation. At the microsyntenic level, scrambling did not preserve operon structures, suggesting an absence of selective pressure to maintain them. The uncoupling of the genome scrambling with morphological conservation in O. dioica suggests the presence of previously unnoticed cryptic species and provides a new biological system that challenges our previous vision of speciation in which similar animals always share similar genome structures.


Genome , Urochordata , Animals , Urochordata/genetics , Urochordata/classification , Evolution, Molecular , Female , Phylogeny , Male , Synteny
10.
Genome Biol Evol ; 16(3)2024 Mar 02.
Article En | MEDLINE | ID: mdl-38491969

We present the first chromosome-level genome assembly and annotation of the pearly heath Coenonympha arcania, generated with a PacBio HiFi sequencing approach and complemented with Hi-C data. We additionally compare synteny, gene, and repeat content between C. arcania and other Lepidopteran genomes. This reference genome will enable future population genomics studies with Coenonympha butterflies, a species-rich genus that encompasses some of the most highly endangered butterfly taxa in Europe.


Butterflies , Animals , Butterflies/genetics , Genome , Chromosomes/genetics , Synteny , Europe , Molecular Sequence Annotation
11.
Sci Rep ; 14(1): 5226, 2024 03 04.
Article En | MEDLINE | ID: mdl-38433262

The key genes BADH2, GBSS1, GBSS2, and HIS1 regulate the fragrance, starch synthesis, and herbicide resistance in rice. Although the molecular functions of four genes have been investigated in the Oryza sativa species, little is known regarding their evolutionary history in the Oryza genus. Here, we studied the evolution of four focal genes in 10 Oryza species using phylogenetic and syntenic approaches. The HIS1 family underwent several times of tandem duplication events in the Oryza species, resulting in copy number variation ranging from 2 to 7. At most one copy of BADH2, GBSS1, and GBSS2 orthologs were identified in each Oryza species, and gene loss events of BADH2 and GBSS2 were identified in three Oryza species. Gene transfer analysis proposed that the functional roles of GBSS1 and GBSS2 were developed in the Asian and African regions, respectively, and most allelic variations of BADH2 in japonica rice emerged after the divergence between the Asian and African rice groups. These results provide clues to determine the origin and evolution of the key genes in rice breeding as well as valuable information for molecular breeders and scientists to develop efficient strategies to simultaneously improve grain quality and yield potential in rice.


Oryza , DNA Copy Number Variations , Oryza/genetics , Phylogeny , Plant Breeding , Synteny
12.
Proc Biol Sci ; 291(2018): 20232937, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38471545

Collembola is a highly diverse and abundant group of soil arthropods with chromosome numbers ranging from 5 to 11. Previous karyotype studies indicated that the Tomoceridae family possesses an exceptionally long chromosome. To better understand chromosome size evolution in Collembola, we obtained a chromosome-level genome of Yoshiicerus persimilis with a size of 334.44 Mb and BUSCO completeness of 97.0% (n = 1013). Both genomes of Y. persimilis and Tomocerus qinae (recently published) have an exceptionally large chromosome (ElChr greater than 100 Mb), accounting for nearly one-third of the genome. Comparative genomic analyses suggest that chromosomal elongation occurred independently in the two species approximately 10 million years ago, rather than in the ancestor of the Tomoceridae family. The ElChr elongation was caused by large tandem and segmental duplications, as well as transposon proliferation, with genes in these regions experiencing weaker purifying selection (higher dN/dS) than conserved regions. Moreover, inter-genomic synteny analyses indicated that chromosomal fission/fusion events played a crucial role in the evolution of chromosome numbers (ranging from 5 to 7) within Entomobryomorpha. This study provides a valuable resource for investigating the chromosome evolution of Collembola.


Arthropods , Genome , Animals , Arthropods/genetics , Genomics , Synteny , Karyotype , Evolution, Molecular
13.
G3 (Bethesda) ; 14(5)2024 May 07.
Article En | MEDLINE | ID: mdl-38537260

The European green woodpecker, Picus viridis, is a widely distributed species found in the Western Palearctic region. Here, we assembled a highly contiguous genome assembly for this species using a combination of short- and long-read sequencing and scaffolded with chromatin conformation capture (Hi-C). The final genome assembly was 1.28 Gb and features a scaffold N50 of 37 Mb and a scaffold L50 of 39.165 Mb. The assembly incorporates 89.4% of the genes identified in birds in OrthoDB. Gene and repetitive content annotation on the assembly detected 15,805 genes and a ∼30.1% occurrence of repetitive elements, respectively. Analysis of synteny demonstrates the fragmented nature of the P. viridis genome when compared to the chicken (Gallus gallus). The assembly and annotations produced in this study will certainly help for further research into the genomics of P. viridis and the comparative evolution of woodpeckers. Five historical and seven contemporary samples have been resequenced and may give insights on the population history of this species.


Birds , Genome , Genomics , Molecular Sequence Annotation , Animals , Birds/genetics , Genomics/methods , Chromosomes/genetics , Synteny , Chromosome Mapping , Repetitive Sequences, Nucleic Acid , Chickens/genetics
14.
Nature ; 627(8005): 811-820, 2024 Mar.
Article En | MEDLINE | ID: mdl-38262590

As the only surviving lineages of jawless fishes, hagfishes and lampreys provide a crucial window into early vertebrate evolution1-3. Here we investigate the complex history, timing and functional role of genome-wide duplications4-7 and programmed DNA elimination8,9 in vertebrates in the light of a chromosome-scale genome sequence for the brown hagfish Eptatretus atami. Combining evidence from syntenic and phylogenetic analyses, we establish a comprehensive picture of vertebrate genome evolution, including an auto-tetraploidization (1RV) that predates the early Cambrian cyclostome-gnathostome split, followed by a mid-late Cambrian allo-tetraploidization (2RJV) in gnathostomes and a prolonged Cambrian-Ordovician hexaploidization (2RCY) in cyclostomes. Subsequently, hagfishes underwent extensive genomic changes, with chromosomal fusions accompanied by the loss of genes that are essential for organ systems (for example, genes involved in the development of eyes and in the proliferation of osteoclasts); these changes account, in part, for the simplification of the hagfish body plan1,2. Finally, we characterize programmed DNA elimination in hagfish, identifying protein-coding genes and repetitive elements that are deleted from somatic cell lineages during early development. The elimination of these germline-specific genes provides a mechanism for resolving genetic conflict between soma and germline by repressing germline and pluripotency functions, paralleling findings in lampreys10,11. Reconstruction of the early genomic history of vertebrates provides a framework for further investigations of the evolution of cyclostomes and jawed vertebrates.


Evolution, Molecular , Hagfishes , Vertebrates , Animals , Hagfishes/anatomy & histology , Hagfishes/cytology , Hagfishes/embryology , Hagfishes/genetics , Lampreys/genetics , Phylogeny , Vertebrates/genetics , Synteny , Polyploidy , Cell Lineage
15.
BMC Plant Biol ; 24(1): 2, 2024 Jan 02.
Article En | MEDLINE | ID: mdl-38163888

The 70 kD heat shock proteins (HSP70s) represent a class of molecular chaperones that are widely distributed in all kingdoms of life, which play important biological roles in plant growth, development, and stress resistance. However, this family has not been systematically characterized in radish (Raphanus sativus L.). In this study, we identified 34 RsHSP70 genes unevenly distributed within nine chromosomes of R. sativus. Phylogenetic and multiple sequence alignment analyses classified the RsHSP70 proteins into six distinct groups (Group A-F). The characteristics of gene structures, motif distributions, and corresponding cellular compartments were more similar in closely linked groups. Duplication analysis revealed that segmental duplication was the major driving force for the expansion of RsHSP70s in radish, particularly in Group C. Synteny analysis identified eight paralogs (Rs-Rs) in the radish genome and 19 orthologs (Rs-At) between radish and Arabidopsis, and 23 orthologs (Rs-Br) between radish and Chinese cabbage. RNA-seq analysis showed that the expression change of some RsHSP70s were related to responses to heat, drought, cadmium, chilling, and salt stresses and Plasmodiophora brassicae infection, and the expression patterns of these RsHSP70s were significantly different among 14 tissues. Furthermore, we targeted a candidate gene, RsHSP70-23, the product of which is localized in the cytoplasm and involved in the responses to certain abiotic stresses and P. brassicae infection. These findings provide a reference for further molecular studies to improve yield and stress tolerance of radish.


Arabidopsis , Raphanus , Raphanus/genetics , Raphanus/metabolism , Phylogeny , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Synteny , Stress, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant
16.
Microbiol Spectr ; 12(1): e0241323, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38084973

IMPORTANCE: The Flankophile pipeline enables the analysis and visualization of flanking regions of prokaryotic sequences of interest on large data sets in one step and in a consistent manner. A specific tool for flanking region analysis with automated visualization has not been developed before, and Flankophile will make flanking region analysis easier and accessible to more people. Flankophile will be especially useful in the field of genomic epidemiology of acquired antimicrobial resistance genes. Here, information from flanking region sequences can be instrumental in rejecting or supporting the possibility of a recent common source of the same resistance gene found in different samples.


Computational Biology , Genomics , Humans , Synteny , Genome , Prokaryotic Cells
17.
Nucleic Acids Res ; 52(D1): D513-D521, 2024 Jan 05.
Article En | MEDLINE | ID: mdl-37962356

In this update paper, we present the latest developments in the OMA browser knowledgebase, which aims to provide high-quality orthology inferences and facilitate the study of gene families, genomes and their evolution. First, we discuss the addition of new species in the database, particularly an expanded representation of prokaryotic species. The OMA browser now offers Ancestral Genome pages and an Ancestral Gene Order viewer, allowing users to explore the evolutionary history and gene content of ancestral genomes. We also introduce a revamped Local Synteny Viewer to compare genomic neighborhoods across both extant and ancestral genomes. Hierarchical Orthologous Groups (HOGs) are now annotated with Gene Ontology annotations, and users can easily perform extant or ancestral GO enrichments. Finally, we recap new tools in the OMA Ecosystem, including OMAmer for proteome mapping, OMArk for proteome quality assessment, OMAMO for model organism selection and Read2Tree for phylogenetic species tree construction from reads. These new features provide exciting opportunities for orthology analysis and comparative genomics. OMA is accessible at https://omabrowser.org.


Databases, Genetic , Ecosystem , Genome , Proteome , Genome/genetics , Phylogeny , Synteny , Internet , Gene Order/genetics
18.
Nat Commun ; 14(1): 8270, 2023 Dec 13.
Article En | MEDLINE | ID: mdl-38092765

There is currently little information about the evolution of gene clusters, genome architectures and karyotypes in early branching animals. Slowly evolving anthozoan cnidarians can be particularly informative about the evolution of these genome features. Here we report chromosome-level genome assemblies of two related anthozoans, the sea anemones Nematostella vectensis and Scolanthus callimorphus. We find a robust set of 15 chromosomes with a clear one-to-one correspondence between the two species. Both genomes show chromosomal conservation, allowing us to reconstruct ancestral cnidarian and metazoan chromosomal blocks, consisting of at least 19 and 16 ancestral linkage groups, respectively. We show that, in contrast to Bilateria, the Hox and NK clusters of investigated cnidarians are largely disintegrated, despite the presence of staggered hox/gbx expression in Nematostella. This loss of microsynteny conservation may be facilitated by shorter distances between cis-regulatory sequences and their cognate transcriptional start sites. We find no clear evidence for topologically associated domains, suggesting fundamental differences in long-range gene regulation compared to vertebrates. These data suggest that large sets of ancestral metazoan genes have been retained in ancestral linkage groups of some extant lineages; yet, higher order gene regulation with associated 3D architecture may have evolved only after the cnidarian-bilaterian split.


Sea Anemones , Animals , Sea Anemones/genetics , Phylogeny , Synteny/genetics , Gene Expression Regulation , Genome/genetics
19.
Genome Biol Evol ; 15(12)2023 Dec 01.
Article En | MEDLINE | ID: mdl-38056449

Urosaurus nigricaudus is a phrynosomatid lizard endemic to the Baja California Peninsula in Mexico. This work presents a chromosome-level genome assembly and annotation from a male individual. We used PacBio long reads and HiRise scaffolding to generate a high-quality genomic assembly of 1.87 Gb distributed in 327 scaffolds, with an N50 of 279 Mb and an L50 of 3. Approximately 98.4% of the genome is contained in 14 scaffolds, with 6 large scaffolds (334-127 Mb) representing macrochromosomes and 8 small scaffolds (63-22 Mb) representing microchromosomes. Using standard gene modeling and transcriptomic data, we predicted 17,902 protein-coding genes on the genome. The repeat content is characterized by a large proportion of long interspersed nuclear elements that are relatively old. Synteny analysis revealed some microchromosomes with high repeat content are more prone to rearrangements but that both macro- and microchromosomes are well conserved across reptiles. We identified scaffold 14 as the X chromosome. This microchromosome presents perfect dosage compensation where the single X of males has the same expression levels as two X chromosomes in females. Finally, we estimated the effective population size for U. nigricaudus was extremely low, which may reflect a reduction in polymorphism related to it becoming a peninsular endemic.


Lizards , Animals , Female , Male , Lizards/genetics , Mexico , Chromosomes , Genome , Synteny
20.
Sci Rep ; 13(1): 22951, 2023 12 22.
Article En | MEDLINE | ID: mdl-38135720

The genomic structures of Vigna hirtella Ridl. and Vigna trinervia (B.Heyne ex Wight & Arn.) Tateishi & Maxted, key ancestral species of the allotetraploid Vigna reflexo-pilosa var. glabra (Roxb.) N.Tomooka & Maxted, remain poorly understood. This study presents a comprehensive genomic comparison of these species to deepen our knowledge of their evolutionary trajectories. By comparing the genomic profiles of V. hirtella and V. trinervia with those of V. reflexo-pilosa, we investigate the complex genomic mechanisms underlying allopolyploid evolution within the genus Vigna. Comparison of the chloroplast genome revealed that V. trinervia is closely related to V. reflexo-pilosa. De novo assembly of the whole genome, followed by synteny analysis and Ks value calculations, confirms that V. trinervia is closely related to the A genome of V. reflexo-pilosa, and V. hirtella to its B genome. Furthermore, the comparative analyses reveal that V. reflexo-pilosa retains residual signatures of a previous polyploidization event, particularly evident in higher gene family copy numbers. Our research provides genomic evidence for polyploidization within the genus Vigna and identifies potential donor species of allotetraploid species using de novo assembly techniques. Given the Southeast Asian distribution of both V. hirtella and V. trinervia, natural hybridization between these species, with V. trinervia as the maternal ancestor and V. hirtella as the paternal donor, seems plausible.


Fabaceae , Vigna , Vigna/genetics , Fabaceae/genetics , Phylogeny , Synteny , Genome, Plant
...